THE NEMATIC-PHASE PROTON NMR SPECTRUM OF π -CYCLOPENTADIENYLTRICARBONYLTUNGSTEN HYDRIDE

D. BAILEY and A. D. BUCKINGHAM

Department of Theoretical Chemistry, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (Great Britain)

M. C. McIVOR

Imperial Chemical Industries Limited, Corporate Laboratory, P.O. Box 11, The Heath, Runcorn, Cheshire (Great Britain)

A. J. REST

Department of Physical Chemistry, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EP (Great Britain)

÷

(Received March 20th, 1973)

SUMMARY

A re-evaluation of the nematic-phase NMR spectrum of $(\pi$ -C₅H₅)W(CO)₃H has shown that *three* orientation parameters are required to specify the orientation of the molecule and not one as was previously reported. Attempts to obtain additional dipolar couplings by ¹³CO substitution failed to give a W-H bond length because of uncertainties in the structure of the $(\pi$ -C₅H₅)W(CO)₃ part of the molecule, ambiguities in the signs of direct and indirect spin couplings, and difficulties in determining the three orientation parameters.

In a preliminary communication one of us reported¹ the NMR spectrum of $(\pi$ -C₅H₅)W(CO)₃H (I) in a nematic liquid crystal solvent and concluded that the hydride proton occupies a non-axial position (Fig. 1), undergoing "pseudo-rotation" giving rise to "pseudo-symmetry". There were, however, insufficient dipolar couplings to determine both the W-H bond length and the angle α (Fig. 1). It was suggested¹ that substitution with ¹³CO might provide the additional dipolar couplings required, and a check on whether one orientation parameter was sufficient to specify the orientation of the molecule. We find that *three* orientation parameters are required to define the mean orientation and report a re-evaluation of the proton NMR spectrum and that, even with ¹³CO substitution, we were unable to determine the W-H bond length and angle α for a number of reasons which are discussed.

Analysis of the proton NMR spectrum of the partially ¹³CO substituted complex dissolved in N-(p-methoxybenzylidene)-p-n-butylaniline (MBBA) gave the "best fit" parameters shown in Table 1. Errors in relative signs¹ have been corrected and the couplings redefined according to the more general scheme:

Fig. 1. The numbering of the protons in (1) and the definition of the molecule-fixed axes and angle α .

TABLE 1

NMR PARAMETERS^e FOR (I) DISSOLVED IN MBBA AT 18°

 $\begin{array}{l} D_{12}(=D_{\rm A}) \ 178.0 \pm 0.7 \quad D_{13}(=D_{\rm B}) \ 43.1 \pm 1.1 \quad D_{16}(=D_{\rm C}) \ -71.8 \pm 1.4 \ {\rm Hz} \\ |D(^{13}{\rm CH}_1)| \ 16.5 \pm 3.0 \\ |2D(^{183}{\rm WH}_6) + J(^{13}{\rm CH}_6)| \ 138.0 \pm 5.0 \ {\rm Hz} \ |2D(^{13}{\rm CH}_6) + J(^{13}{\rm CH}_6)| \ 69.1 \pm 2.0 \ {\rm Hz} \\ J_{12}(=J_{\rm A})^{b} \ 3.0 \ J_{13}(=J_{\rm B})^{b} \ 0.8 \ J_{16}(=J_{\rm C}) \ 0.0 \ {\rm Hz} \\ J(^{13}{\rm CH}_1) \ 0.0 \ |J(^{13}{\rm CH}_6)|^{c} \ 14.1 \ |J(^{183}{\rm WH}_6)|^{c} \ 36.7 \ {\rm Hz} \\ S_{33} \ 0.0606 \pm 0.0002 \\ {\rm r.m.s. \ error \ in \ line \ fitting \ 1.0 \ {\rm Hz} \end{array}$

^a The original paper¹ contained an error in the sign of D_{16} (D_C), and the parameter D_D was the quantity $|J(^{183}WH_6)+2D(^{183}WH_6)|$. Also the parameter $D(^{183}WH_1)$ ($=D_E$) was an approximate upper limit based on the experimental linewidth. We did not observe this coupling, and have omitted it in the above Table.

^b Taken from ref. 1. ^c Taken from ref. 4.

TABLE 2

GEOMETRICAL DATA OBTAINED FROM RELATED COMPOUNDS

r(H−C) ^a	1.093 Å
r[CC(Cp)] ^b	1.45 Å
r(A-W) ^b	2.00 Å
r(W-H) ^c	1.6 Å
r(W-C) ^b	1.96 Å
COsemi-cone angle ^b 56°	

^a Ref. 5. ^b From an X-ray study of $(\pi - C_6H_5)W(CO)_3AuP(C_6H_5)_3$ Wilford and Powell⁶. ^c The value assumed in ref. 1.

$$D_{ij} = \frac{-\hbar\gamma^{i}\gamma^{j}}{2\pi r_{ij}^{3}} \{S_{33}(\frac{3}{2}\cos^{2}\beta_{3}^{ij} - \frac{1}{2}) + \frac{1}{2}(S_{11} - S_{22})(\cos^{2}\beta_{1}^{ij} - \cos^{2}\beta_{2}^{ij}) + 2S_{12}\cos\beta_{1}^{ij}\cos\beta_{1}^{ij} + 2S_{23}\cos\beta_{2}^{ij}\cos\beta_{3}^{ij} + 2S_{31}\cos\beta_{3}^{ij}\cos\beta_{1}^{ij}\}$$
(1)

and β_n^{ij} is the angle between the internuclear vector and the *n* axis.

Reliable structural information for $(\pi$ -C₅H₅)W(CO)₃H does not exist, since the complex was affected by the X-ray beam, causing the crystallographic determination to be rather imprecise². In attempting to calculate the significance of the dipolar couplings, we used structural data from related compounds given in Table 2.

An axially symmetric structure, which requires only one orientation parameter S_{33} to specify the orientation of the molecule in the liquid crystal, was eliminated¹ because the experimental value of D_{16}/D_{12} was always greater than the predicted value for all reasonable structures. The hydride proton must, therefore, occupy a non-axial position similar to the C₂H₅ group in $(\pi$ -C₅H₅)Mo(CO)₃(C₂H₅)³. The isotropic NMR spectrum shows that at room temperature (I) is undergoing rapid intramolecular rearrangement in which the CO and H coordination positions interchange⁴. This may be considered as "pseudo-rotation"⁴ giving rise to "pseudosymmetry"¹ which could reduce the number of independent orientation parameters if the rearrangement were rapid compared to the orientation time. The absence of a marked variation of D_{16}/D_{12} with temperature or concentration was taken¹ to suggest strongly that, "notwithstanding its apparently low symmetry, the molecular orientation is determined, to a good approximation, by a single orientation parameter S_{33} ". On this basis the half-cone angle α (Fig. 1) was computed as $53 \pm 3^{\circ}$, using 3-point averaging and assuming a W-H bond length of 1.6 Å. If, however, this cone angle is used to calculate $D(^{183}WH_6)$ we find that it has a value of -3.2 Hz. This is very different from values obtained from Table 1 and indicates that the assumption that the orientation of (I) may be described by a single orientation parameter is false.

The rapid rotation of the π -C₅H₅ group reduces the number of independent orientation parameters. In an attempt to obtain additional dipolar couplings to solve unambiguously for the position of the hydride proton we prepared a sample enriched with ¹³CO by thermal exchange in *n*-hexane solution. An infrared spectrum showed that approximately 40% of the molecules were $(\pi - C_5 H_5)W(^{12}CO)_2(^{13}CO)H$. Nematic-phase spectra were obtained showing ${}^{13}C-H_1$ and ${}^{13}C-H_6$ couplings. The observed splittings give $|2D_{ij}+J_{ij}|$, in which both D_{ij} and J_{ij} can have positive or negative signs. If the sign of J_{ij} is unknown, as for $J(^{183}WH_6)$, there are four possible values for D_{ii} . It is possible in theory to overcome the ambiguity in the sign of D_{ii} by using well-determined structural parameters from another technique to compute trial values of D_{ij} which could be refined by iteration. For (I) the X-ray data² are not good enough to allow this to be done and suitable distances had to be taken from related compounds (Table 2). It was hoped that $D(^{13}CH_1)$ and D_{16} would give S_{11} and S_{31} since S_{33} was already known from D_{12} and D_{13} , which do not depend on S_{11} and S_{31} . By means of a numerical-integration program, we found that $D(^{13}CH_1)$ and D_{16} have a very similar dependence on S_{31} and are insensitive to variations in both S_{31} and S_{11} , while $D(^{183}WH_6)$ and $D(^{13}CH_6)$ do vary with S_{31} and S_{11} . The insensitivity of $D(^{13}CH_1)$ and D_{16} to variations in S_{31} and S_{11} accounts for the observation¹ that D_{16}/D_{12} remains constant over a range of temperature; a more serious consequence is that $D(^{13}CH_1)$ cannot be used to obtain S_{11} or S_{31} . The combination of the ambiguity

of signs and the unfortunate coincidences which prevent the determination of S_{11} and S_{31} from proton magnetic resonance studies, make it impossible for us to deduce a W-H bond length and the angle α . ¹³C NMR observations might help in the determination of S_{11} and S_{31} .

ACKNOWLEDGEMENTS

We thank Miss F. A. Shipway for her preliminary analysis of this problem, the S.R.C. for a Studentship to D.B., the Royal Society for a Pickering Research Fellowship to A.J.R. and I.C.I. Limited for the use of their 220 MHz spectrometer at Runcorn.

REFERENCES

4

1 M. C. McIvor, J. Organometal. Chem., 27 (1971) C59.

- 2 P. L. Johnson, Diss. Abstr., 29 (1968) B1626.
- 3 M. J. Bennett and R. Mason, Proc. Chem. Soc., (1963) 273.
- 4 J. W. Faller, A. S. Anderson and C.-C. Chen., J. Chem. Soc. D, (1969) 719.
- 5 L.E. Sutton (Ed.), Supplement to Tables of Interatomic distances, Spec. Publ. Chem. Soc. 18, London, 1965.
- 6 J. B. Wilford and H. M. Powell, J. Chem. Soc. A, (1969) 8.